精品国产鲁一鲁一区二区,无码亚洲成a人片在线观看手机,哔哩哔哩免费观看入口,浴室里强摁做开腿呻吟的漫画

技術文章

Technical articles

當前位置:首頁技術文章等離子體處理對 硅表面氧空位缺陷工程

等離子體處理對 硅表面氧空位缺陷工程

更新時間:2020-12-02點擊次數(shù):2925

Electronic Supplementary Information For

Surface oxygen vacancy defect engineering of p-CuAlO2 via Ar&H2 plasma

treatment for enhancing VOCs sensing performances

Bin Tong, a b Gang Meng, * a c Zanhong Deng, a c Mati Horprathum, d Annop

Klamchuen e and Xiaodong Fang * a c

aAnhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine

Mechanics, Chinese Academy of Sciences, Hefei, 230031, China

bUniversity of Science and Technology of China, Hefei 230026, China

cKey Lab of Photovoltaic and Energy Conservation Materials, Chinese Academy of Sciences, Hefei

230031, China

d Opto-Electrochemical Sensing Research Team, National Electronic and Computer Technology Center,

PathumThani 12120, Thailand

eNational Nanotechnology Center, National Science and Technology Development Agency, Pathum

Thani 12120, Thailand

 

Experimental Section

1.1 Synthesis of CuAlO2 particles

First of all, 0.04 mol Cu(CH3COO)2·H2O (Alfa Aesar, 99.9%) was dissolved in 160 mL absolute alcohol with

vigorous stirring, and then 16 mL HNO3 (Sinopharm Chemical Reagent, 99.7%), 0.2 mol C6H8O7·H2O

(Sinopharm Chemical Reagent, 99.8%) and 0.04 mol Al[OCH(CH3)CH2CH3]3 (Alfa Aesar, 97%) were added into

the above solution in sequence. After stirring for 6 hours, 16 mL HNO3 was added to the solution drop by drop to

obtain a well-mixed precursor solution. The precursor solution was dried at 100 °C overnight. In order to remove

the organics, the condensed solution was heated to 300 °C for 6 hours. After that, the dried powders were milled

for 24 h using a planetary ball miller and then annealed at 1100 °C for 10 h under air atmosphere. Subsequently,

the powders were reground and heated to 950 °C under flowing N2 atmosphere for 6 hours to form delafossite

CuAlO2 particles. To ensure the pure phase of delafossite CuAlO2, trace (excess) CuxO was washed with 1 M

diluted hydrochloric acid, 11 deionized water and absolute alcohol in sequence several times, and the final products

were dried in an oven at 80 °C for 24 h.

1.2 Fabrication of CuAlO2 sensors

The CuAlO2 slurry was prepared by dispersing the powders in appropriate isopropyl alcohol. CuAlO2 sensors

were prepared by brushing the above paste onto a thin alumina substrate with micro-interdigital Pt electrodes.

CuAlO2 films on slide glass substrates were fabricated simultaneously for characterization. After naturally drying,

the CuAlO2 sensors and films were heated at 350 °C under flowing air atmosphere for 3 hours. Afterwards, the

samples were treated by Ar&H2 plasma in KT-S2DQX (150 W, 13.56 MHz, (鄭州科探儀器設備有限公司)) plasma etching system

at 10 sccm 4% H2 in Ar and the pressure of ~ 99.8 Pa for 30 min, 60 min and 90 min, herein are referred to as

pristine, PT-30, PT-60 and PT-90.

1.3 Characterization and gas sensing test

CuAlO2 samples were characterized by X-ray diffraction (XRD, Rigaku Smartlab), scanning electron

microscope (SEM, VEGA3 TESCAN), field emission high resolution transmission electron microscope

(HRTEM, Talos F200X), X-ray photoelectron spectroscopy (XPS, Thermo Scientific Esca Lab 250Xi

spectrometer ), photoluminescence (PL, JY Fluorolog-3-Tou) and Electron spin resonance (ESR, JEOL, JES

FA200 ESR spectrometer ). Mott-Schottky measurements were carried out on an electrochemical work-station

(Zahner Company, Germany) in 1M NaOH solution (pH=12.5) with frequency of 5000 Hz. Platinum sheet,

Ag/AgCl electrode and pristine/ PT-30 CuAlO2 samples were used as counter electrode, reference electrode and

work electrode, respectively. Gas sensing tests were examined in SD101 (Hua Chuang Rui Ke Technology Co.,

Ltd.) sensing system. The response was defined as ΔR/Ra, ΔR = Rg Ra, where Ra and Rg are sensor resistance in

 

flowing drying air and synthetic VOCs, respectively. During gas sensing test, the total flow rate of the dry air and

VOCs gas were adjusted to be 1000 sccm by mass flow controllers (MFCs).

 

Fig. S1. Cross-sectional SEM image of typical CuAlO2 sensors. The inset shows a low-magnification image.

The sensing layer is comprised of loosely packed CuAlO2 particles, with a thickness of ~ 15 μm

 

 

Fig. S2. XRD patterns of pristine and Ar&H2 plasma treated CuAlO2 sensors. Ar&H2 plasma treatment didn’t

cause any detectable impurity phase. All the samples show a 3R (dominent) and 2H mixed CuAlO2 phase.

 

Fig. S3. SEM images of pristine (a) and Ar&H2 plasma treated PT-30 (b), PT-60 (c) and PT-90 (d) CuAlO2

sensors. Except for 90 minitues treated sample (PT-90) with appearance of small nanodots, no obrvious change

of surface morphology was obervered via Ar&H2 plasma treatment.

 中國科學技術大學   申請論文提名獎CC - 2019 - SI - Surface oxygen vacancy defect engineering of p-CuAlO2 via Ar&H2 plasma treatment

感謝中科大的論文    沒有發(fā)完  之后我在慢慢更新吧

夜夜高潮次次欢爽av女视频| 清纯校花的被脔日常h漫画| 1—36集电视剧免费观看36集 | 男女啪啪流出白色液体| 国产老色鬼无码免费视频| 午夜福利免视频100集2019| 人妻丰满熟妇AV无码区不卡| 丁香色欲久久久久久综合网| 成人av无码一区二区三区| av无码精品一区二区三区| 欧美老熟妇乱人伦人妻| 国产99久一区二区三区a片| 小雪你的奶好大把腿张开| 反贪风暴2粤语| 色婷婷在线精品国自产拍| 97SE亚洲国产综合自在线| 国产亚洲一区二区手机在线观看| 《性妲己》电影在线观看| 狂躁女人双腿流白色液体| 国产伦精品一区二区三区免费 | 亚洲欧美中文日韩在线v日本| 欧美黄图| 我与妺的性经历| 黑人rapper大全 顶级| 熟女少妇在线视频播放| 中文无码一区二区三区在线观看| 美国专线欧洲专线日本专线| 少妇被躁爽到高潮无码人狍大战| 深度肠交fisting狂叫| 国产在线拍揄自揄拍免费下载| 皇上好涨奴婢夹不文h| 人妻中出无码一区二区三区| 香蕉人妻av久久久久天天| 亚洲国产欧美国产第一区| 嗯灬啊灬把腿张开灬动态图| 乱人伦人妻中文字幕无码| 久久九九久精品国产免费直播| 精品久久人人爽天天玩人人妻| 久久综合亚洲色hezyo国产| 女友躲雨被老头玩弄| 伊人狠狠色丁香婷婷综合尤物|